
An Improved Method for Detection of
Satire from User-Generated Content

 Syed Taha Owais1 Prof . Tabrez Nafis2 Seema Khanna3

1

Research Scholar, Jamia Hamdard, New Delhi
2

Assistant Professor, Jamia Hamdard, New Delhi
3

Technical Director – National Informatics Centre, New Delhi

Abstract: Sarcasm is a form of speech act in which the
speakers convey their message in an implicit way. It is a
sophisticated form of speech act widely used in online
communities. The inherently ambiguous nature of sarcasm
sometimes makes it hard even for humans to decide whether
an utterance is sarcastic in nature or not. Recognition of
sarcasm may anticipate benefits in many sentiment analysis of
NLP applications, such as safe search, review summary
reports, engaging dialogue systems and review ranking
applications and systems.
Classification of online news articles for satire has been very
much done in the manual way. In our system, we have
experimented with an automated approach to classify online
news article using the SVM (Support Vector Machine)
classification method. SVM has been shown to give good
classification results when ample training documents are
given. Obtaining the best results with SVMs requires an
understanding of their workings and the various ways a user
can influence their accuracy.

Keywords-Sarcasm, Satire, Irony, Sentiment Analysis,
Supervised and Unsupervised Classification, Irony Detection,
Algorithm, Machine Learning, Polarity, Opinion Mining, Data
Corpus, Toenization,Support Vector Machine.

1. INTRODUCTION

Irony and satire can be useful weapons in any
communicator‘s rhetorical arsenal. They provide a nuanced
means for expressing critical sentiments and for openly
exploring divisive subjects. However, the very subtlety that
grants these devices their utility also lends to their greatest
drawback: implied meanings are often lost on their
intended audience. In textual communication this difficulty
is magnified by the absence of any non-verbal cues that
might imply a non-literal interpretation.
The goal of this project is to utilize machine learning
strategies to develop a classifier for recognizing satirical or
sarcastic web articles. Such content is, by definition,
written to resemble more sincere communication and may
be unrecognizable as ironic without sufficient contextual
information. Therefore, in an attempt to capture broader
―context, the proposed classifier will rely not only on
original, article texts, but also upon user-generated
comments associated with each article.

2. RELATED WORKS & THEIR LIMITATIONS

While the use of irony and sarcasm is well studied from its
linguistic and psycho logic aspects, automatic recognition
of sarcasm is a challenging and emerging area of

application in NLP, accomplished only by few researches.
As far as the opinion mining is concerned, the sarcasm is
considered as a hard nut that is yet to be cracked.
Tepperman et al. (2006) identify that sarcasm in verbal
systems, their research is limited to sarcasm expressed in
utterances that hold the expression 'Yeah right' and it
depends heavily on cues in the spoken dialogue such as
laughter, pauses within the speech stream, the gender
(recognized by voice) of the speaker and prosodic features
[1].
Tsur (2010) propose a semi supervised framework for
recognition of sarcasm [2]. The proposed algorithm utilizes
some features specific to (Amazon) product reviews. This
paper continues this line, proposing SASI a robust
algorithm that successfully captures sarcastic sentences in
other, radically different, and domains such as twitter.
Utsumi (1996) introduces the implicit theory of display, a
cognitive computational model that frameworks an ironic
system [3]. The complex axiomatic system depends heavily
on complex formalism representing world knowledge.
While comprehensive, it is currently impractical to
implement on a large scale or for an open domain.
Detailed work done by Paolo Rosso et al, in their work
“Figurative Language Processing in Social Media for
Human recognition and Irony detection” tries to bring out a
linguistic-based framework for figurative language
processing with special reference to emotion human like
humor and irony in text generated in social media [4]. The
author has suggested “Ambiguous-based pattern” using the
concept of lexical, morphological, syntactic and semantic
construction of the text in English language. The author
emphasizes his models with examples and mathematical
expressions of the model.
Lexical: Drugs may lead to nowhere, but at least it’s a
scenic route.
Morphological: Customer: I’ll have two lamb chops, and
make them lean, please.
Waiter: To which side, sir?
Syntactic: Parliament fighting inflation is like the Mafia
fighting crime.
Semantic Jesus saves, and at present costs, which is a
nothing but a miracle!

The author also considers the figurative language
processing as a field of natural language processing. The

Syed Taha Owais et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2084-2088

www.ijcsit.com 2084

authors also focus on finding the formal element to
computational process the figurative uses of natural
language. The author makes detailed study of phonology,
incongruity, semantics, similes, etc. However this study
does not explain the subjective task and personal decisions.
Another study conducted by Po-Ya Angela using a corpus
of 500 #irony and 500 #sarcasm tweets, have concluded
that the sarcastic tweets use more positive words but ironic
tweets use more neutral words [5].
E. Riloff and other have made a comparative study of
positive and negative sentiments and a negative situation
[6].

3. PROPOSED WORK
3.1 Data Corpus
Our satire corpus consists of a total of 2500 news wire
documents and 110 satire news articles, split into fixed
training and test sets as detailed in Table 1. The news wire
documents were randomly sampled from the English
Gigaword Corpus. The satire documents were selected to
relate closely to at least one of the news wire documents
by:

1. Randomly selecting a news wire document;
2. Hand-picking a key individual, institution or event

from the selected document, and using it to
formulate a phrasal query (e.g. Bill Clinton)

3. Using the query to issue a site-restricted query to
the Google search engine; and

4. Manually filtering out ―non-newsy, irrelevant
and overly offensive documents from the top-10
returned documents (i.e. documents not containing
satire news articles, or containing satire articles
which were not relevant to the original query).

Table- 1: Data Corpus Statistics

It is important to note that the number of satirical news
articles in the corpus is significantly less than the number of
true news-wire articles. This reflects an impressionistic view
of the web: there is far more true news content than satirical
news content. The corpus is novel to this research, and is
publicly available for free downloading..at:
http://www.csse.unimelb.edu.au/research/lt/resources/satire
/.
3.2 Method
3.2.1 Standard text classification approach
We take our starting point from topic-based text
classification (Dumaise al., 1998; Joachims, 1998) and
sentiment classification (Turney, 2002; Pang and Lee,
2008) [7], [8],[9] and [10].
State-of-the-art results in both fields have been achieved
using support vector machines (SVMs) and bag-of-words
features. We supplement the bag-of-words model with
feature weighting, using the two methods described below.
Binary feature weights
Under this scheme all features are given the same weight,
regardless of how many times they appear in each article.
The topic and sentiment classification examples cited
found binary features gave better performance than other

alternatives.
Bi-normal separation feature scaling: BNS (Forman,
2008) has been shown to outperform other established
feature representation schemes on a wide range of text
classification tasks. This superiority is especially
pronounced for collections with a low proportion of
positive class instances. Under BNS, features are allocated
a weight according to the formula:

|F-1(tpr) – F-1(fpr)|
where F-1 is the INCDF (inverse normal cumulative
distribution function), tpr is the true positive rate
(P(feature|positive class)) and fpr is the false positive rate
(P(feature|negative class)).
BNS produces the highest weights for features that are
strongly correlated with either the negative or positive
class. Features that occur evenly across the training
instances are given the lowest weight. This behavior is
particularly helpful for features that correlate with the
negative class in a negatively skewed classification task, so
in our case BNS should assist the classifier in making use
of features that identify true articles.
SVM classification is performed with SVMlight (Joachims,
1999) using a linear kernel and the default parameter
settings.
3.2.2 Targeted lexical feature
This section describes three types of features intended to
embody characteristics of satire news documents.
Headline features
Most of the articles in the corpus have a headline as their
first line. To a human reader, the vast majority of the satire
documents in our corpus are immediately recognizable as
such from the headline alone, suggesting that our classifiers
may get something out of having the headline contents
explicitly identified in the feature vector. To this end, we
add an additional feature for each unigram appearing on the
first line of an article. In this way the heading tokens are
represented twice: once in the overall set of unigrams in the
article, and once in the set of heading unigrams.
Profanity
True news articles very occasionally include a verbal quote
which contains offensive language, but in practically all
other cases it is incumbent on journalists and editors to
keep their language ―cleanǁ. A review of the corpus shows
that this is not the case with satirical news, which
occasionally uses profanity as a humorous device. Let P be
a binary feature indicating whether or not an article
contains profanity, as determined by the
Regexp::Common::profanity Perl module given at:
http://search.cpan.org/perldoc?Regexp::Common::
profanity
Slang
As with profanity, it is intuitively true that true news
articles tend to avoid slang. An impressionistic review of
the corpus suggests that informal language is much more
common to satirical articles. We measure the informality of
an article as:

where T denotes the set of tokens (unigram) in the article

Syed Taha Owais et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2084-2088

www.ijcsit.com 2085

and s is a function taking the value 1 if the token has a
dictionary definition marked as slang and 0 if it does not.
It is important to note that this measure of ―informalityǁ is
approximate at best. We do not attempt, e.g., to
disambiguate the sense of individual word terms to tell
whether the slang sense of a word is the one intended.
Rather, we simply check to see if each word has a slang
usage in Wiktionary.
3.3 Proposed Algorithm
Step 1—Text pre-processing:
Pre-processing of the text and representing each document
as a feature vector.
Step 2—Feature Extraction:
Generating set of features by transforming input data.
Step 3—Training:
To train a classifier using a classification tool (e.g.
LIBSVM).
Step 4—Classification:
Applying classifiers in new documents.
3.3.1 Text Pre-processing
3.3.1.1 Tokenization
Tokenization is the process of breaking a stream of text
into symbols, phrases, words or other useful elements
referred tokens. This token-list is inputed for further
processing like parsing or mining of the text. Tokenization
is very useful in both computer science and linguistics
(where it is a form of text segmentation), where it forms
part of lexical analysis.
Example:
Phrase: We are attending a tutorial now.
After Tokenization: ―we,―are, ―attending ,―a,
―tutorial, ―now .
For these operations, we used the Python nltklibrary.
3.3.1.2 Stop Word Removal
In computing, stop words are words which are filtered out
prior to, or after, text processing. It is controlled by human
input and is not automatic in nature. There is no list
(definite) of stop words which uses all tools, if even used.
Any group of words can be chosen as the stop words for a
given purpose. But they consist of those words which are
commonly used and not useful for text classification.
Example:
Remove words such as ―a, ―the, ―I, ―he, ―she, ―is,
―are, etc.
Removal of stop words is done using nltk, where English
stop words are predefined.
3.3.1.3 Stemming
Stemming is the process for reducing inflected (or
sometimes derived) words to their stem, base or root form.
In other words, it is the process to normalize words derived
from the same root.
Example:
Attending― attend; Teacher― teach etc.
Stemming is done using Porter stemmer, which is a part of
nltk.

3.3.2 Feature Extraction
Feature extraction involves simplifying the amount of
resources required to describe a large set of data precisely.
When the analysis of complex data is done, one of the

major issues arises from the number of variables present.
Analysis which includes a large number of parameters
generally requires a large amount of computational memory
and computation power or a classification algorithm which
over-fits the training sample and generalizes poorly to new
samples. Transforming the input data into the set of
features is called feature extraction.
We have used unigram features, i.e. to use each word as a
feature. We adopted and then implemented the following
weighting approaches, like:

1. Binary feature weights (BIN)
2. Term Frequency - Inverse Document Frequency (TF-
IDF)
3. Term Frequency - Bi-normal separation feature
scaling (TF-BNS)

 4. TF-IDF-BNS (Original work)

Binary feature weights (BIN)
Under this scheme all features are given the same weight,
regardless of how many times they appear in each article.
The topic and sentiment classification examples cited
found binary features gave better performance than other
alternatives.
Term Frequency - Inverse Document Frequency (TF-
IDF)
Normalized is the most popular weighting schema for
word frequency is 'tfidf', given below:

1. tf(w)–term frequency (number of word
occurrences in a document)

2. df(w)–document frequency (number of documents
containing the word)

3. N–number of all documents
4. tfidf(w)–relative importance of the word in the

document

Term Frequency - Bi-normal separation feature scaling
(TF-BNS)
Under TF-BNS, features are allocated a weight according
to the formula:

 TF*(F-1(tpr) – F-1(fpr))

where F-1 is the INCDF (inverse normal cumulative
distribution function), tpr is the true positive rate
(P(feature|positive class)) and fpr is the false positive rate
(P(feature|negative class)) and TF is term frequency.
BNS produces the highest weights for features that are
strongly correlated with either the negative or positive
class. Features that occur evenly across the training
instances are given the lowest weight. This behavior is
particularly helpful for features that correlate with the
negative class in a negatively skewed classification task, so
in our case BNS should assist the classifier in making use
of features that identify true articles.
TF-IDF-BNS
Under TF-IDF-BNS, features are allocated a weight
according to the formula:

Syed Taha Owais et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2084-2088

www.ijcsit.com 2086

 (TF-BNS)* (IDF)
TF-BNS–Term Frequency Bi-Normal Separation feature
scaling (Calculated earlier).
IDF–Inverse document frequency (Calculated earlier).

3.3.3 Training
We train a classifier using a classification tool, e.g.
LIBSVM which is a SVM (Support Vector Machine)
classifier.
3.3.3.1 Support Vector Machine
A support vector machine (SVM) is a concept in statistics
and computer science and IT for a set of related SLM
(supervised learning methods) that analyze data and
recognize patterns, used for classification and regression
analysis. For each given input the standard SVM takes a
set of input data and predicts which of the two possible
classes forms the input, making the SVM a non-
probabilistic binary linear classifier.
Given a set of training examples, each marked as
belonging to one of two categories, an SVM (support
vector machine) training algorithm constructs a model that
assigns new ways into one category or the other.
An SVM model is a representation of the examples as
points in space, mapped so that the separate categories'
examples are broken by a clear gap that is as wide as
possible. New examples are then linked into that same
space and predicted to join to a category based on which
side of the introduced gap they fall on.
More formally, a SVM (support vector machine) forms a
hyperplane or set of hyperplanes in a space (high or
infinite-dimensional), which can be used for classification,
regression, or other tasks.
Intuitively, the hyperplane achieves a good separation that
has the longest distance to its nearest training point of data
to any class.

Figure-1: Hyperplane having maximum margin and SVM

trained margins with samples.

3.3.3.2 Non-Linear Classification
The original optimal hyperplane algorithm proposed by
Vapnik in 1963 was a linear classifier. However, according
to, Bernhard E. Boser, Isabelle M. Guyon and Vladimir N.
Vapnik in 1992 suggested a way to create nonlinear
classifiers by introducing the kernel trick (originally given
and proposed by Aizerman et al. to hyperplanes having
maximum margin.

Figure-2: Classification (Non-Linear).

3.3.3.3 Kernel Trick
Kernel trick helps map your original data into a different
space so that you can use linear classifiers. This mapping
can often substantially increase the number of features to
consider. This can be problematic as your number of
dimensions grows. The Kernel Trick addresses this by
putting a cap on the feature explosion so that the
complexity of your classifier increases only linearly with
the size of your original data.

Figure-3: Kernel Trick

3.3.3.4 Classification
An algorithm that implements classification, especially in a
concrete implementation, is known as a classifier. The term
"classifier" sometimes also refers to the mathematical
function, is implemented by a classification algorithm that
maps input data to a category. In our case we used SVM
Classifier (LIBSVM) for classification of Satire Articles.
The classification measure is given by some parameters.
These parameters are as follows:

Accuracy: It is the proportion of true results (both true
positives and true negatives) in the population. It is a
parameter of the test.

Precision: It is the proportion of the true positives against
all the positive results (both true positives and false
positives).

Recall: It is the proportion of the true positives against all
the true results (both true positives and false negatives).

F-Score: It is a measure of a test's accuracy. It considers
both the precision p and the recall r of the test to compute
the score.

Syed Taha Owais et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2084-2088

www.ijcsit.com 2087

Table-2: Classification

4. RESULTS

4.1 Performance of the system
The baseline is a naïve classifier that assigns all instances
to the positive class (i.e. SATIRE). An SVM classifier with
simple binary unigram word features provides a standard
text classification benchmark.
All of the classifiers easily outperform the baseline. This is
to be expected given the low proportion of positive
instances in the corpus. The benchmark classifier has very
good precision, but a low recall. Adding the exaggeration,
slang, and profanity features provides a small
improvement in both precision and recall.
All of the classifiers achieve very high precision and
considerably lower recall. Error analysis suggests that the
reason for the lower recall is subtler satire articles, which
require detailed knowledge of the individuals to be fully
appreciated as satire. While they are not perfect, however,
the classifiers achieve remarkably high performance
given the superficiality of the features used.

Table- 3-:Results for Satire Detection

5. CONCLUSION

5.1 Choices made and Reasons
This project was implemented entirely in Python, because
Python has inbuilt support for natural language processing
using NLTK Library. It is efficient in performing complex
operations easily with a few lines of code and has inbuilt
functions for almost every trivial or non-trivial task.
5.2 Key Features of the project
We have done feature extraction of all the articles in the
training set and assigned weights to all the words that
remain after pre-processing task.
We assigned weights to the words according to the
following weighing schemes:
1. Binary feature weights (BIN).
2. Term Frequency - Inverse Document Frequency
(TF- IDF).
3. Term Frequency - Bi-normal separation feature scaling
(TF-BNS).
4. TF-IDF-BNS (original work).
This research project has introduced a novel task to
computational linguistics and machine learning:
determining whether a news-wire article is ―trueǁ or
satirical. We found that the combination of SVMs with

BNS feature scaling achieves high precision. Also, some
notable mentions are as follows:

1. Our classification using various weighing
technique provided varied result.

2. The best result of Satire Classification was given
by TF-BNS weighing scheme.

3. Controlling the parameters of the SVM Classifier
also helped in getting better result and we arrived
at the best result by exhaustive experiments and
trials with the SVM classifier.

FUTURE SCOPE

Lexical approaches are clearly inadequate if we assume
that good satirical news articles tend to emulate real news
in tone, style, and content, what is needed is an approach
that captures the document semantics.
Semantic based classification may yield better result in the
case of satire article detection, as dealing with the meaning
of a word is better than dealing with the usage of the word.
As the successful use of satire relies heavily upon context
and subtlety, methods that consider only whether a word
was used and not how it is used may ultimately prove
incapable of driving a highly effective classifier. Further
research may need to explore more advanced language
processing methods.

REFERENCES
[1] Joseph Tepperman, David Traum, and Shrikanth S. Narayanan.

2006. ”Yeah right”: Sarcasm recognition for spoken dialogue
systems. In Proceedings of InterSpeech, pages 1838–1841,
Pittsburgh, PA, USA, September.

[2] Oren Tsur, Dmitry Davidov, and Ari Rappoport. 2010. ICWSM -
A great catchy name: Semi-supervised recognition of sarcastic
sentences in product reviews. In Proceeding of AAAI Conference
on Weblogs and Social Media (ICWSM–10), Washington, DC,
USA, May.

[3] Akira Utsumi. 1996. A unified theory of irony and its
computational formalization. In Proceedings of the 16th conference
on Computational linguistics (COLING 1996), pages 962–967,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

[4] Paolo Rosso et al. 2012. March. Figurative Language Processing
in Social Media for Human recognition and Irony detection,
http://www.academia.edu/3032533/From_humor_recognition_to_i
rony_detection_The_figurative_language_of_social_media.

[5] Po-Ya-Angela Wang. 2013. #Irony or #Scarcas: A quantitative and
qualitative study based on Twitter.

[6] Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalindra De Silva,
Nathan Gilbert, Ruihong Huang. 2013. Sarcasm as Contrast
between a Positive Sentiment and Negative Situation emnlp13-
sarcasm.pdf.

[7] Dumaise al., 1998. Inductive Learning Algorithms and
Representations for Text Categorization.
http://robotics.stanford.edu/users/sahami/papers-dir/cikm98.pdf.

[8] Joachims, 1998. Text categorization with Support Vector
Machines: Learning with Many Relevant Features,
http://www.cs.iastate.edu/~jtian/cs573/Papers/Joachims-ECML-
98.pdf.

[9] Peter D. Turney, 2002, Thumbs Up or Thumbs Down? Semantic
Orientiation Applied to Unsupervised Classification of Reviews.

[10] Bo Pang, and Lillian Lee. 2008. Opinion mining and sentiment
analysis. Foundations and Trends in Information Retrieval, 2(1-2):
1-135.

Syed Taha Owais et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2084-2088

www.ijcsit.com 2088

